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Abstract

Analytical solutions play a very important role in the validation of numerical codes. However, exact analytical

solutions involving optimal design of transiently loaded multilayered structures, are rare in the literature.

In this paper, we solve an optimal design problem involving wave propagation in a two-layered elastic strip subjected

to transient loading. We obtain explicit formulas for the stress in each layer using the method of characteristics, and

then use these results to identify the designs that provide the smallest stress amplitude. The derived analytical results are

then successfully used to validate a previously developed, hybrid computational optimization software.

� 2003 Elsevier Ltd. All rights reserved.

Keywords: Wave propagation; Goupillaud-type layered media; Structural optimization; Analytical solutions; Validation of numerical

codes
1. Prior work

The study of wave propagation in layered media is important in a number of diverse disciplines such as

seismology, electromagnetics, optics, acoustics, et cetera. An exhaustive review of the literature on the

subject is beyond the scope of this paper, and the reader is referred to the classic treatise by Brekhovskikh

(1960) for a review of the mathematical framework and physical phenomena related to wave propagation in

elastic and electromagnetic media. The different approaches to the design of layered media for optimal

reflection/transmission characteristics, can be broadly classified into either frequency domain or time do-

main methods. Some relevant work in this area is included below. Using frequency domain methods, Hager

et al. (2000) derive relations needed to minimize or maximize reflection in elastic coatings subjected to
steady-state, band-limited, time-harmonic acoustic waves. Hager and Rostamian (1987) also investigate

conditions necessary to minimize acoustic reflections from a wall with a viscoelastic coating. Wesolowski
* Corresponding author. Tel.: +1-410-306-0863; fax: +1-410-306-0759.
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(1995) studies a problem for a two-layer interface sandwiched between homogeneous elastic layers sub-

jected to time-harmonic waves. Gusev (2001, 2002) provides extremal relations for the optimal design of

homogeneous and inhomogeneous layered structures subjected to time-harmonic acoustic waves. Abgaryan

and Lyubashevskii (1984) develop relations for active suppression of time-harmonic waves in a structure
containing a nondirectional sensor and radiator. Krasil�nikov (1983) uses the method of ‘‘slowly varying

amplitudes’’ to find optimal designs for a multilayered interference absorber. Bao and Bonnetier (2001)

consider an optimal design problem of a periodic structure subjected to time-harmonic, transverse mag-

netically polarized waves and establish the existence of the optimal designs for the class of problems

investigated.

In contrast to the body of literature on time-harmonic wave propagation, there is much less published

work on the optimization of layered media subjected to transient loading. Nygren et al. (1999) study the

problem of maximizing the efficiency of elastic energy transmission through a layer of elastic junctions for
application to percussive drilling. Konstanty and Santosa (1995) pose a transient optimal design problem

for minimally reflective coatings in the time-domain, and solve the problem numerically using a BFGS

updated secant method; their analysis is limited to problems with small interlayer impedance contrast. A

number of other authors consider problems related to the propagation of stress waves in discretely layered

or inhomogeneous media; however, these authors do not address the problem of optimization. For in-

stance, Ali (1999) uses transmission line theory to obtain recurrence relation solutions for acoustic waves in

a layered medium. Tenenbaum and Zindeluk (1992) develop exact algebraic expressions for the reflected

wave in a semi-infinite layered homogeneous or inhomogeneous medium. Lee et al. (1975), provide some
general expressions for the stress jump in both functionally graded and discretely layered media, and

provide error estimates when a medium with continuous property variation is replaced by a medium

consisting of a series of discrete homogeneous layers. Chiu and Erdogan (1999), and Scheidler and Gazonas

(2002), solve several transient wave-propagation boundary-value problems for free-fixed and free–free

boundary conditions in power-law and quadratic inhomogeneous one-dimensional media, using Laplace

transform methods.

Anfinsen (1967) treats a boundary-value problem similar to our own, and finds optimal material

properties which maximize/minimize the amplitude of the first transmitted stress wave along an elastic strip.
Anfinsen develops difference equations and solves them using z-transform methods. In addition, Anfinsen

determines asymptotic similarity relationships applicable for optimal two-layered designs. We corroborate

Anfinsen�s findings which show that increasing the impedance ratio of the layers tends to minimize the

maximum stress on a design. Interestingly, despite the work of Anfinsen, our approach and results for the

stress and optimal design of a two-layered elastic strip, appear to be entirely new. Furthermore, we use our

analytical results to validate the hybrid DYNA3D/GLO optimization software (Gazonas and Randers-

Pehrson, 2001), previously used to find optimal designs to a class of impact and penetration problems using

constitutive behaviors representative of lightweight multilayered armors. Finally, we mention that Bruck
(2000) develops a time history profile for the stress waves and discovers a time delay benefit when using

functionally graded materials. In our work, we discover a similar benefit when using two-layered optimal

designs other than the homogeneous. Such designs provide a time delay benefit when the peak values of

stress are reached.
2. Analytical solutions for stress wave propagation and optimal design

We consider one-dimensional wave propagation in an isotropic elastic strip. The strip is assumed to be of

finite length L, made of two layers of arbitrary lengths L1 and L2, so that L1 þ L2 ¼ L. The layer interface is
located at the fixed position x ¼ L1, where 0 < L1 < L. The left face of the strip is subjected to a stress
loading p, while the right face is fixed (Fig. 1).
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Fig. 1. Two-layered finite strip under transient load (physical coordinates).
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The density and elastic modulus along the strip are denoted by the piece-wise constant functions qðxÞ
and EðxÞ, taking values q1, q2, and E1, E2, in each layer, respectively. In this work, we consider longitudinal

elastic waves for a uniaxial strain state (Fig. 1), however our results are also valid for the case of uniaxial

stress. Using the definitions of the wave speed c ¼ ðE=qÞ1=2, and characteristic impedance z ¼ qc, we relate
to each layer the wave speed and characteristic impedance c1, z1 and c2 and z2, respectively. The uniaxial

strain elastic modulus E, is related to the Young�s modulus E, through the expression

E ¼ Eð1� mÞ=½ð1þ mÞð1� 2mÞ�, where m is Poisson�s ratio (Meyers, 1994).
Our design parameter a is chosen to represent the impedance ratio between layer 1 and layer 2:

a ¼ z1
z2
> 0. The transit time s through the strip is given as
s ¼ L1

c1
þ L2

c2
:

Throughout this paper we assume a Goupillaud-type layered medium, which is a medium that ensures the

same wave travel time through each layer, Claerbout (1976),
L1

c1
¼ L2

c2
¼ s

2
: ð1Þ
In order to preserve the same wave travel time for both layers (c1=c2 ¼ L1=L2 ¼ l), the layer properties have
to relate as: a ¼ ðlq1Þ=q2 ¼ E1=ðlE2Þ. In the special case of two layers of equal length, l ¼ 1 and the

density and elastic modulus become proportional.

This problem can be easily converted to the case of two layers of equal length and wave speed of unity,

by replacing the spatial variable x with the new variable n ¼
R x
0

ds
cðsÞ, and using condition (1). Here, c � cðsÞ is

the piece-wise constant wave speed function, taking values c1 and c2 in each layer, respectively. As a result,
the wave equation becomes:
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z
o2u
ot2

¼
o z ou

on

� �
on

; ð2Þ
where z ¼ zðnÞ represents the characteristic impedance given by the piece-wise constant function:
zðnÞ ¼ z1; where 0 < n < s
2
;

z2; where s
2
< n < s:

�
ð3Þ
The wave speed now becomes the same (unity) in each layer (c ¼ c1 ¼ c2 ¼ 1), while the design parameter

a ¼ z1
z2
> 0, as stated before.

Let raðn; tÞ represent the value of the stress at position n, time t, and design parameter a. Our goal is to

find a design that provides the smallest stress amplitude during the wave propagation along the strip. We

formulate our optimal design problem as
ðPÞ inf
a>0

sup
06 n6 s; 06 t<þ1

raðn; tÞ;
subject to the initial/boundary-value problem,
o2u
ot2 ¼ o2u

on2
; when n 6¼ s

2
;

rð0; tÞ ¼ z ou
on ð0; tÞ ¼ pHðtÞ; uðs; tÞ ¼ 0;

uðn; 0Þ ¼ ou
ot ðn; 0Þ ¼ 0:

8><
>: ð4Þ
Here, uðx; tÞ represents the displacement at (x; t), and HðtÞ represents the Heaviside function. As demon-

strated later in the paper, solving problem (P), becomes equivalent to solving the physical problem with

layers of unequal lengths, because the only essential condition that influences the stress wave propagation
along the strip, is the equal travel time through each layer. Therefore, from now on, any conclusions made

for the case of two layers of equal length (Fig. 2), will apply to the general physical case of layers of unequal

lengths (Fig. 1).

For the two-layered strip shown in Fig. 2, the propagation of the stress wave from layers 1 to 2, can be

expressed by the following relations,
r� ¼ rþ þ ½r�; ½r�T ¼ 2

1þ a
½r�I; ½r�R ¼ 1� a

1þ a
½r�I: ð5Þ
Here, r� and rþ represent the stress values behind and ahead of the discontinuity, while ½r� represents the
stress jump. The subscripts refer to I (incident), T (transmitted), and R (reflected) wave. The above rela-

tions, see Meyers (1994), involve the continuity conditions at the layer interface, and will be our main

reference in calculating the stress values throughout this paper.

In the special case of a homogeneous design, when a ¼ 1, combining (5) with the method of charac-

teristics, one can easily derive the time history profile for the stress. In the region ahead and behind the

stress discontinuity propagating along the strip, the stress takes the following values, respectively,
0 and p; during the time interval ð0; sÞ;
p and 2p; during the time intervals ðð2k � 1Þs; 2ksÞ for k ¼ 1; 2; . . . ;1;
2p and p; during the time intervals ð2ks; ð2k þ 1ÞsÞ:

8<
: ð6Þ
This implies that,
max
0<n<s; 0<t<þ1

r1ðn; tÞ ¼ 2p; ð7Þ
where according to our notation, r1ðn; tÞ represents the stress at position n, time t, and design parameter

a ¼ 1. From here, an upper bound for the optimization problem (P) follows,
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Fig. 2. Two-layered finite strip under transient load (transformed coordinates).
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inf
a>0

sup
06 n6 s; 06 t<þ1

raðn; tÞ6 max
06 n6 s; 06 t<þ1

r1ðn; tÞ ¼ 2p: ð8Þ
Based on the results given later in this section, we prove that the reverse inequality in (8) holds, and

conclude that the homogeneous design is an optimal design for problem (P). We also notice that no design

with design parameter a < 1, can be optimal, since for such designs the stress amplitude always exceeds the

value 2p. Indeed, following the first transmitted wave and using (5), it appears that in the region behind the

stress discontinuity, the stress takes values,
rðn; tÞ ¼ 2

1þ a
p > p; where

s
2
< t < s and n ¼ t:
As the first transmitted wave reflects at the fixed boundary located at n ¼ s, the stress doubles and reaches a

value greater than 2p. Summarizing the above observations we have,
sup
06 n6 s; 06 t<þ1

raðn; tÞP 2p ¼ max
06 n6 s; 06 t<þ1

r1ðn; tÞ; where 0 < a6 1: ð9Þ
In the rest of this paper, we investigate and obtain optimality results for two-layered designs with a > 1. In

Fig. 3a and b, are given the Lagrangian diagrams for the case of equal layer length under consideration, as

well as for the general physical case of two layers of unequal lengths but equal travel time.

For a given a > 1, after applying (5) and the method of characteristics, we find the following recurrence

relation among the stress values Ta;k,
Ta;k ¼ bðaÞ � ðTa;k�1 � Ta;k�2Þ þ Ta;k�3; k ¼ 4; 5; . . . ;1;

Ta;1 ¼
2

ða þ 1Þ p; Ta;2 ¼
8ap

ða þ 1Þ2
; Ta;3 ¼

2ð3a � 1Þ2p
ða þ 1Þ3

;

8<
: ð10Þ
where bðaÞ ¼ 3a�1
aþ1

. The recurrence relation given in (10) is linear, homogeneous and with constant coeffi-

cients. Its corresponding characteristic equation,
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T k � bðaÞ � T k�1 þ bðaÞ � T k�2 � T k�3 ¼ 0;
has three distinct roots,
y1 ¼ 1; y2 ¼
ða � 1Þ þ 2

ffiffiffi
a

p
I

a þ 1
; and y3 ¼

ða � 1Þ � 2
ffiffiffi
a

p
I

a þ 1
; ð11Þ
where I ¼
ffiffiffiffiffiffiffi
�1

p
. The general solution is
Ta;k ¼ A1yk1 þ A2yk2 þ A3yk3 ð12Þ

with coefficients A1, A2, A3 determined from the boundary conditions given in (10),
A1 ¼ p; A2 ¼ � p
2
; A3 ¼ � p

2
: ð13Þ
Substituting (11) and (13) into (12), we obtain,
Ta;k ¼ p � p
2

ða � 1Þ þ 2
ffiffiffi
a

p
I

a þ 1


 �k
� p
2

ða � 1Þ � 2
ffiffiffi
a

p
I

a þ 1


 �k
: ð14Þ
Further simplifications of (14), lead to the following expression for the term Ta;k,
Ta;k ¼ p½1� cosðkuðaÞÞ�; ð15Þ

where uðaÞ ¼ arctan 2

ffiffi
a

p

a�1
, and a > 1. In fact, the following relations are equivalent,
u ¼ arctan
2

ffiffiffi
a

p

a � 1
; where a > 1 ð16Þ
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and,
a ¼ 1þ cosu
1� cosu

; where 0 < u <
p
2
: ð17Þ
From (15), one can derive the following bounds for the stress amplitude in layer 1,
06 sup
0<n<s

2
; 0<t<þ1

raðn; tÞ6 2p; where aP 1: ð18Þ
These results indicate that for all designs with aP 1, the stress amplitude in layer 1 never exceeds the value

2p.
Similarly, using the continuity conditions at the layer interface and the method of characteristics, we

derive that the new stress terms Sa;k satisfy the following relation,
Sa;k ¼ �Sa;k�1 þ 2Ta;k; k ¼ 1; 2; . . . ;1;
Sa;1 ¼ 2Ta;1 ¼ 4

ðaþ1Þ p;

�
ð19Þ
or equivalently,
Sa;k ¼ 2ð�1Þk
Pk

i¼1ð�1ÞiTa;i; k ¼ 1; 2; . . . ;1;

Sa;1 ¼ 2Ta;1 ¼ 4
ðaþ1Þ p:

(
ð20Þ
Substituting the expression for Ta;k in (20), we further obtain,
Sa;k ¼ 2ð�1Þkp
Xk

j¼1

ð�1Þj � 2ð�1Þkp
Xk

j¼1

ð�1Þj cosðjuðaÞÞ; ð21Þ
where as before uðaÞ ¼ arctanð2
ffiffi
a

p

a�1
Þ, and a > 1. The calculation of each partial sum and further simplifi-

cations imply that the term Sa;k is given by the formula,
Sa;k ¼ p 1

"
�
cos

�
ð2k þ 1Þ uðaÞ

2

�
cos uðaÞ

2

#
: ð22Þ
Due to the above expression for the terms Sa;k, the stress amplitude in layer 2 will either reach or exceed the

value 2p, for any given design with a > 1. A more detailed discussion is provided when the set Ka is

introduced in (26). As a result we have,
sup
s
2
<n<s; 0<t<þ1

raðn; tÞP 2p; where aP 1: ð23Þ
Combining (18) and (23) we have that,
sup
06 n6 s; 0<t<þ1

raðn; tÞP 2p; where a P 1: ð24Þ
Finally, combining (8), (9) and (24), we conclude that,
inf
a>0

sup
06 n6 s; 06 t<þ1

raðn; tÞ ¼ max
06 n6 s; 06 t<þ1

r1ðn; tÞ ¼ 2p: ð25Þ
This clearly indicates that the homogeneous design with a ¼ 1, is an optimal design. Generally, a design

with a > 1 is optimal iff the stress values given by Sa;k for k ¼ 1; 2; . . . ;1, do not exceed 2p.
Indeed, for any given a > 1, we identify the set Ka as the set of all natural numbers k ¼ kðaÞ such that

Sa;k P 2p. Based on the expression of the terms Sa;k given in (22), the condition Sa;k P 2p, becomes equivalent

to
h
cosðð2kþ1ÞuðaÞ

2
Þ

cos
uðaÞ
2

6 � 1
i
, and furthermore to

h
ð2jþ 1Þp � uðaÞ

2
6 ð2k þ 1Þ uðaÞ

2
6 ð2jþ 1Þp þ uðaÞ

2

i
, where

j ¼ 0; 1; 2; . . . ;1. As a result, we can describe the set Ka as
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Ka ¼ k : 2k

(
þ 1 2

"
ð2jþ 1Þ 2p

uðaÞ � 1; ð2jþ 1Þ 2p
uðaÞ þ 1

#
; j ¼ 0; 1; 2; . . . ;1

)
: ð26Þ
For any given a > 1, Ka is countably infinite because there is always at least one odd number of the form

2k þ 1, in an interval of two-unit length such as ½ð2jþ 1Þ 2p
uðaÞ � 1; ð2jþ 1Þ 2p

uðaÞ þ 1� for j ¼ 0; 1; 2; . . . ;1.

This proves that the terms Sa;k, and therefore the stress amplitude, will reach or exceed the value 2p for some

value of k, for every a > 1. From here it follows that a design is optimal iff Sa;k ¼ 2p for all k 2 KðaÞ. This is
equivalent to the fact that ½2k þ 1 ¼ ð2jþ 1Þ 2p

uðaÞ � 1� for j ¼ 0; 1; 2; . . . ;1, which combined with (16), (17)

and (25), leads to the following necessary and sufficient condition for the optimal values of the design

parameter a,
an ¼
1þ cosðunÞ
1� cosðunÞ

; where 0 < un ¼
p
n
6

p
2

and n ¼ 2; 3; . . . ;1: ð27Þ
Substituting these optimal values into the stress formulas Ta;k and Sa;k, we find that these periodic functions

have a time-period of 2n, where the stress reaches its first peak of 2p at the nth time interval. These results,
applied to the time history profiles involving the analytical solutions (15) and (22), match with the graphical

output given in Figs. 4a and b and 5a and b, included in the next page. The normalized values for stress and

time used in Figs. 4a and b and 5a and b, are calculated as, r� ¼ r
p, and T ¼ t

s.

Here p, s are the initially given constants representing the stress loading, and the transit time through the

elastic strip. We also notice that from (5), the stress jump at the optimal designs with parameter an takes

values ½r�T ¼ ð1� cosðpnÞÞ½r�I, and ½r�R ¼ � cosðpnÞ½r�I. In general, for the designs with parameter,
aj;n ¼
1þ cosuj;n

1� cosuj;n
; where 0 < uj;n ¼

ð2jþ 1Þp
n

<
p
2
; ð28Þ
there are time intervals when the stress takes the value 2p. Here j and n are natural numbers, chosen to

satisfy the bounds for uj;n given in (28).

The following examples, provide a means to better understand the structure of the Ka set and the

conclusions made in this section.
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Fig. 4. Optimal stress history when s ¼ 1 and a ¼ 3: (a) layer 1: n ¼ 0:25, (b) layer 2: n ¼ 0:75.
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Fig. 5. Optimal stress history when s ¼ 1 and a ¼ 32:163: (a) layer 1: n ¼ 0:25, (b) layer 2: n ¼ 0:75.
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Example 1. a ¼ 1þcosðp=3Þ
1�cosðp=3Þ ¼ 3. According to (27), such a design obtained for n ¼ 3, is optimal. In this case

uðaÞ ¼ p
3
and (26) implies that,
Ka ¼ fk : 2k þ 1 2 ½6ð2jþ 1Þ � 1; 6ð2jþ 1Þ þ 1�; j ¼ 0; 1; 2; . . . ;1g
¼ f6jþ 2; 6jþ 3; j ¼ 0; 1; 2; . . . ;1g: ð29Þ
Based on the structure of Ka, the stress amplitude reaches its peaks when Sa;6jþ2 ¼ 2p, and Sa;6jþ3 ¼ 2p. As

predicted for n ¼ 3, the first peak is reached at the 3rd time interval with 6 units time-period. This can be
verified by the graphical output given in Fig. 4b.

Example 2. a ¼ 1þcosð5p=11Þ
1�cosð5p=11Þ. Here uðaÞ ¼ 5

11
p and from (26) we obtain,
Ka ¼ k : 2k
�

þ 1 2 22ð2jþ 1Þ
5



� 1;

22ð2jþ 1Þ
5

þ 1

�
; j ¼ 0; 1; 2; . . . ;1

�
: ð30Þ
Although the design parameter a is not optimal, it satisfies the condition (28) for j ¼ 2 and n ¼ 11. One can
easily check that although S2 > 2p and S6 > 2p, there are indices such as f10; 11g � Ka for which S10 ¼ 2p
and S11 ¼ 2p, as predicted.

Example 3. a ¼ 1þcosðp=
ffiffi
6

p
Þ

1�cosðp=
ffiffi
6

p
Þ. In this case we have that uðaÞ ¼ p=

ffiffiffi
6

p
and from (26) we obtain,
Ka ¼ fk : 2k þ 1 2 ½ð4jþ 2Þ
ffiffiffi
6

p
� 1; ð4jþ 2Þ

ffiffiffi
6

p
þ 1�; j ¼ 0; 1; 2; . . . ;1g: ð31Þ
In this case, none of the conditions (27) or (28) is satisfied. This means that the design is not optimal and

that all the terms Sa;k for k 2 Ka, will exceed the value 2p without ever reaching it, i.e. we expect that

Sa;k > 2p, 8k 2 Ka.

In conclusion, in this work, we solve the problem of minimizing the stress amplitude for a two-layered

elastic strip, with layers of equal wave travel time, and subjected to transient loading. Our results provide

explicit formulas for the stress propagation and optimal designs in one-dimension, and apply for a two-
layered elastic strip of unequal layer lengths.



6426 A.P. Velo, G.A. Gazonas / International Journal of Solids and Structures 40 (2003) 6417–6428
3. Numerical results using DYNA3D/GLO optimization software

Since exact analytical solutions to optimal design problems involving transiently loaded multilayered

structures are rare in the literature, analysts have relied on hybrid computational methods which link
formal nonlinear parameter estimation algorithms with computational finite element methods for designing

structures subjected to transient loadings. The results of the previous section provide useful benchmarks

which can be used to validate these hybrid optimization design tools. Such a design tool was recently

developed by Gazonas and Randers-Pehrson (2001), by coupling the global-local optimization software

package known as GLO (Murphy, 1999) with the three-dimensional transient structural dynamics finite

element code known as DYNA3D (Hallquist and Whirley, 1989). The local optimization algorithm within

GLO is based upon the nonlinear optimization program NLQPEB that was developed by Baker (1992) for

optimization of shaped charge jets.
The optimization software was tested to see if it could find any of the optimal points given by the op-

timality condition (27). The boundary value problem illustrated in Fig. 2 was modeled using DYNA3D

with 60 hexahedral finite elements through the thickness. The optimization strategy is based upon a global-

local approach since the optimal points in layer 2 contain an infinite number of minima, four of which are

illustrated in Fig. 6. The plots in Fig. 6 were determined using our analytical expressions for stress, Sa;k and

Ta;k, through parametric variation of a over the range 0–10, and k to a time range out to 50 units.

The global optimization uses a discrete scheme which simply subdivides the design parameter a into

uniformly spaced regions from which the local scheme can begin searching for extrema. The local scheme
seeks to minimize the maximum stress in layer 2 using a BFGS variable-metric, sequential-quadric-pro-

gramming algorithm (Dennis and Schnabel, 1983), with a modified Powell merit function (Powell, 1977).

Since the number of optimal designs is infinite in nature, the search was limited, rather arbitrarily, to a

region involving the first eight optimal design points. Table 1 shows that the hybrid DYNA3D/GLO

optimization software successfully found all of the first eight optimal design points to a reasonable degree

of accuracy. This result both validates the DYNA3D/GLO optimization software and corroborates the

optimality condition obtained earlier.

An example of optimal layer design for a two-layered elastic strip of equal lengths, is a design made of
tungsten and lead (a ¼ 3) or a design made of tungsten and nylon (a ¼ 32:163). The proportionality between
the density and elastic modulus in both layers, provide a constant wave speed and therefore equal travel
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Fig. 6. Maximum stress vs. a in a two-layered finite strip showing the first four optimal a points given by optimality condition (27).



Table 1

Comparison of analytical and DYNA3D/GLO derived a values

n 2 3 4 5 6 7 8 9

a (Eq. (27)) 1 3 5.828 9.472 13.983 19.196 25.270 32.163

a (DYNA/GLO) 1 3 5.829 9.470 13.924 19.182 25.247 32.120
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times. These examples appear in Figs. 4 and 5, where it can be seen that the stresses never exceed the value of
2p, a fact that qualifies them to be optimal designs. One can also observe that the time of onset of the

maximum stress in each layer increases with the design parameter a. This means that if a design that delays

the time of occurrence of the maximum stress is sought, then the value of the optimal design parameter an

given in (27) should be maximized (within practical bounds). Because of such good agreement between the

analytical results obtained previously and DYNA3D solutions, these findings support the use of purely

computational means to establish optimal designs for transient problems of this nature.

Several other problems with different boundary conditions were then investigated using the DYNA3D/

GLO software, including a two-layered free–free system with Heaviside loading, and two-layered free–free
and free-fixed systems with rectangular pulse loading pðtÞ ¼ pðHðtÞ � Hðt � t0ÞÞ. Interestingly, none of

these boundary-value problems provided optimal solutions with behavior similar to the optimality con-

dition (27). However, for the free-fixed problem subjected to the rectangular pulse loading, as the value of t0
increased and the loading approached that of a Heaviside loading, the optimal points (27) were gradually

recovered.
4. Summary

In this paper, we investigated stress wave propagation in a two-layered elastic strip subjected to free-

fixed boundary conditions under a Heaviside stress loading. Explicit expressions for the stress in each

layer were obtained, and the countably infinite set of optimal designs which provide the smallest stress
amplitude was identified. A time delay benefit when using optimal designs other than the homogeneous,

was discovered. The analytical expressions for the stress in each layer compared well with the

stress history profile predicted when using computational finite element methods. In addition, the op-

timality condition (27) provided means to validate a method based upon DYNA3D/GLO optimization

software.

The validation of such computational optimization algorithms against known exact optimal solutions

enables us to consider a broader class of impact and penetration problems using more realistic constitutive

behaviors applicable to multilayered armor.
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